Tag Archives: Tree

Computer Algorithms: Finding the Lowest Common Ancestor

Introduction

Here’s one task related to the tree data structure. Given two nodes, can you find their lowest common ancestor?

In a matter of fact this task always has a proper solution, because at least the root node is a common ancestor of all pairs of nodes. However here the task is to find the lowest one, which can be quite far from the root.

Finding the Lowest Common Ancestor
Finding the Lowest Common Ancestor

We don’t care what kind of trees we have. However the solution, as we will see, can be very different depending on the tree type. Indeed finding the lowest common ancestor can have linear complexity for binary search trees, which isn’t true for ordinary trees. Continue reading Computer Algorithms: Finding the Lowest Common Ancestor

Computer Algorithms: Heap and Heapsort

Introduction

Heapsort is one of the general sorting algorithms that performs in O(n.log(n)) in the worst-case, just like merge sort and quicksort, but sorts in place – as quicksort. Although quicksort’s worst-case sorting time is O(n2) it’s often considered that it beats other sorting algorithms in practice. Thus in practice quicksort is “faster” than heapsort. In the same time developers tend to consider heapsort as more difficult to implement than other n.log(n) sorting algorithms.

In the other hand heapsort uses a special data structure, called heap, in order to sort items in place and this data structure is quite useful in some specific cases. Thus to understand heapsort we first need to understand what is a heap.

So first let’s take a look at what is a heap.

Overview

A heap is a complete binary tree, where all the parents are greater than their children (max heap). If all the children are greater than their parents it is considered to call the heap a min-heap. But first what is a complete binary tree? Well, this is a binary tree, where all the levels are full, except the last one, where all the items are placed on the left (just like on the image below).

Complete Binary Tree
A complete binary tree is a structure where all the levels are completely full, except the last level, where all the items are placed on the left!
Continue reading Computer Algorithms: Heap and Heapsort

Computer Algorithms: Balancing a Binary Search Tree

Introduction

The binary search tree is a very useful data structure, where searching can be significantly faster than searching into a linked list. However in some cases searching into a binary tree can be as slow as searching into a linked list and this mainly depends on the input sequence. Indeed in case the input is sorted the binary tree will seem much like a linked list and the search will be slow.

Inserting into a binary search tree
A binary search tree may seem much like a linked lists if the input is nearly sorted!

To overcome this we must change a bit the data structure in order to stay well balanced. It’s intuitively clear that the searching process will be better if the tree is well branched. This is when finding an item will become faster with minimal effort.

Balanced tree
Searching into a balanced tree is significantly faster than searching into a non-balanced tree!

Since we know how to construct a binary search tree the only thing left is to keep it balanced. Obviously we will need to re-balance the tree on each insert and delete, which will make this data structure more difficult to maintain compared to non-balanced search trees, but searching into it will be significantly faster. Continue reading Computer Algorithms: Balancing a Binary Search Tree

Computer Algorithms: Binary Search Tree

Introduction

Constructing a linked list is a fairly simple task. Linked lists are a linear structure and the items are located one after another, each pointing to its predecessor and its successor. Almost every operation is easy to code in few lines and doesn’t require advanced skills. Operations like insert, delete, etc. over linked lists are performed in a linear time. Of course on small data sets this works fine, but as the data grows these operations, especially the search operation becomes too slow.

Indeed searching in a linked list has a linear complexity and in the worst case we must go through the entire list in order to find the desired element. The worst case is when the item doesn’t belong to the list and we must check every single item of the list even the last one without success. This approach seems much like the sequential search over arrays. Of course this is bad when we talk about large data sets.

Search over Linked Lists and Arrays
Sequential search over arrays seems much like searching in linked lists and it is a basically ineffective opration!
Continue reading Computer Algorithms: Binary Search Tree