# Computer Algorithms: Graph Best-First Search

## Introduction

So far we know how to implement graph depth-first and breadth-first search. These two approaches are crucial in order to understand graph traversal algorithms. However they are just explaining how we can walk through in breadth or depth and sometimes this isn’t enough for an efficient solution of graph traversal.

In the examples so far we had an undirected, unweighted graph and we were using adjacency matrices to represent the graphs. By using adjacency matrices we store 1 in the A[i][j] if there’s an edge between vertex i and vertex j. Otherwise we put a 0. However the value of 1 gives us only the information that we have an edge between two vertices, which is not always enough when designing graphs.

Indeed graphs can be weighted. Sometimes the path between two vertices can have a value. Thinking of a road map we know that distances between cities are represented in miles or kilometers. Thus often representing a road map as a graph, we don’t put just 1 between city A and city B, to say that there is a path between them, but also we put some meaningful information – let’s say the distance in miles between A and B.

Note that this value can be the distance in miles, but it can be something else, like the time in hours we’ve to walk between those two cities. In general this value is a function of A and B. So if we keep the distance between A and B we can say this function is F(A, B) = X, or distance(A, B) = X miles.

Of course in this particular example F(A, B) = F(B, A), but this isn’t always true in practice. We can have a directed graph where F(A, B) != F(B, A).

Here I talk about distance between two cities and it is the edge that brings some additional information. However sometimes we have to store the value of the vertices. Let’s say I’m playing a game (like chess) and each move brings me some additional benefit. So each move (vertex) can be evaluated with some particular value. Thus sometimes we don’t have a function of and edge like F(A, B), but function of the vertices, like F(A) and F(B).

In breadth-first search and depth-first search we just pick up a vertex and we consecutively walk through all its successors that haven’t been visited yet.

So in DFS in particular we started from left to right in the array above. So the first node that has to be explored is vertex “1”.

`0: [0, 1, 0, 0, 1, 1]`

However sometimes, as I said above, we have weighted graphs, so the question is – is there any problem, regarding to the algorithm speed, if we go consecutively through all successors. The answer in general is yes, so we must modify a bit our code in order to continue not with the first but with the best matching successor. By best-matching we mean that the successor should match some criteria like – minimal or maximal value. Continue reading Computer Algorithms: Graph Best-First Search

# Computer Algorithms: Finding the Lowest Common Ancestor

## Introduction

Here’s one task related to the tree data structure. Given two nodes, can you find their lowest common ancestor?

In a matter of fact this task always has a proper solution, because at least the root node is a common ancestor of all pairs of nodes. However here the task is to find the lowest one, which can be quite far from the root.

We don’t care what kind of trees we have. However the solution, as we will see, can be very different depending on the tree type. Indeed finding the lowest common ancestor can have linear complexity for binary search trees, which isn’t true for ordinary trees. Continue reading Computer Algorithms: Finding the Lowest Common Ancestor

# Computer Algorithms: Binary Search

## Overview

The binary search is perhaps the most famous and best suitable search algorithm for sorted arrays. Indeed when the array is sorted it is useless to check every single item against the desired value. Of course a better approach is to jump straight to the middle item of the array and if the item’s value is greater than the desired one, we can jump back again to the middle of the interval. Thus the new interval is half the size of the initial one.

If the searched value is greater than the one placed at the middle of the sorted array, we can jump forward. Again on each step the considered list is getting half as long as the list on the previous step, as shown on the image bellow.

## Implementation

Here’s a sample implementation of this algorithm on PHP. Obviously the nature of this approach is guiding us to a recursive implementation, but as we know, sometimes recursion can be dangerous. That’s why here we can see either the recursive and iterative solution. Continue reading Computer Algorithms: Binary Search