One of the two main algorithms in finding the minimum spanning tree algorithms is the algorithm of Kruskal. Before getting into the details, let’s get back to the principles of the minimum spanning tree.

We have a weighted graph and of all spanning trees we’d like to find the one with minimal weight. As an example on the picture above you see a spanning tree (T) on the graph (G), but that isn’t the minimum weight spanning tree!

As we saw in the previous post, the algorithm of Dijkstra is very useful when it comes to find all the shortest paths in a weighted graph. However it has one major problem! Obviously it doesn’t work correctly when dealing with negative lengths of the edges.

We know that the algorithm works perfectly when it comes to positive edges, and that is absolutely normal because we try to optimize the inequality of the triangle.

Since Dijkstra’s algorithm make use of a priority queue normally we get first the shortest adjacent edge to the starting point. In our very basic example we’ll get first the edge with the length of 3 -> (S, A).

We already know how we can find the shortest paths in a graph starting from a given vertex. Practically we modified breadth-first search in order to calculate the distances from s to all other nodes reachable from s. We know that this works because BFS walks through the graph level by level.

Some sources give a very simple explanation of how BFS finds the shortest paths in a graph. We must just think of the graph as a set of balls connected through strings.

As we can see by lifting the ball called “S” all other balls fall down. The closest balls are directly connected to “s” and this is the first level, while the outermost balls are those with longest paths.

Clearly edges like those between A and B doesn’t matter for our BFS algorithm because they don’t make the path from S to C through B shorter. This is also known as the triangle inequality, where the sum of the lengths of two of the sides of the triangle is always greater than the length of the third side.

We must only answer the question is BFS the best algorithm that finds the shortest path between any two nodes of the graph? This is a reasonable question because as we know by using BFS we don’t find only the shortest path between given vertices i and j, but we also get the shortest paths between i and all other vertices of G. This is an information that we actually don’t need, but can we find the shortest path between i and j without that info? Continue reading Computer Algorithms: Dijkstra Shortest Path in a Graph→

To find the minimum value into an array of items itsn’t difficult. There are not many options to do that. The most natural approach is to take the first item and to compare its value against the values of all other elements. Once we find a smaller element we continue the comparisons with its value. Finally we find the minimum.

First thing to note is that we pass through the array with n steps and we need exactly n-1 comparisons. It’s clear that this is the optimal solution, because we must check all the elements. For sure we can’t be sure that we’ve found the minimum (maximum) value without checking every single value. Continue reading Computer Algorithms: Minimum and Maximum→