Computer Algorithms: Topological Sort Revisited

Introduction

We already know what’s topological sort of a directed acyclic graph. So why do we need a revision of this algorithm? First of all I never mentioned its complexity, thus to understand why we do need a revision let’s get again on the algorithm.

We have a directed acyclic graph (DAG). There are no cycles so we must go for some kind of order putting all the vertices of the graph in such an order, that if there’s a directed edge (u, v), u must precede v in that order.

The process of putting all the vertices of the DAG in such an order is called topological sorting. It’s commonly used in task scheduling or while finding the shortest paths in a DAG.

The algorithm itself is pretty simple to understand and code. We must start from the vertex (vertices) that don’t have predecessors.

Continue reading Computer Algorithms: Topological Sort Revisited

Computer Algorithms: Dijkstra Shortest Path in a Graph

Introduction

We already know how we can find the shortest paths in a graph starting from a given vertex. Practically we modified breadth-first search in order to calculate the distances from s to all other nodes reachable from s. We know that this works because BFS walks through the graph level by level.

Some sources give a very simple explanation of how BFS finds the shortest paths in a graph. We must just think of the graph as a set of balls connected through strings.

As we can see by lifting the ball called “S” all other balls fall down. The closest balls are directly connected to “s” and this is the first level, while the outermost balls are those with longest paths.

Clearly edges like those between A and B doesn’t matter for our BFS algorithm because they don’t make the path from S to C through B shorter. This is also known as the triangle inequality, where the sum of the lengths of two of the sides of the triangle is always greater than the length of the third side.

We must only answer the question is BFS the best algorithm that finds the shortest path between any two nodes of the graph? This is a reasonable question because as we know by using BFS we don’t find only the shortest path between given vertices i and j, but we also get the shortest paths between i and all other vertices of G. This is an information that we actually don’t need, but can we find the shortest path between i and j without that info? Continue reading Computer Algorithms: Dijkstra Shortest Path in a Graph

Computer Algorithms: Shortest Path in a Graph

Introduction

Since with graphs we can represent real-life problems it’s almost clear why we would need an efficient algorithm that calculates the shortest path between two vertices. Getting back to our example of a road map we can use such an algorithm in order to find the shortest path between two cities. This example, of course, is very basic indeed, but it can give us a clear example of where shortest path can be applied.

In the other hand, we can model an enormous field of real-life problems using graphs – not only road maps. As we already know, whenever we have relations between different abstract objects we can refer an efficient graph algorithm.

OK, so we need a shortest path algorithm, but before we proceed with the exact algorithm first we’ll need to answer some questions and give some definitions.

Overview

First we need a definition of the terms distance and path between two nodes. A path is considered to be the sequence of vertices (or edges if you wish) between two vertices i and j. Of course we assume that there might be no path between any to vertices in the graph! Also we assume that this definition relates both for directed and undirected graphs. After we have the definition of a path we can proceed by defining a “distance”, which is said to be the number of edges in the path between i and j.

Continue reading Computer Algorithms: Shortest Path in a Graph

Computer Algorithms: Graph Best-First Search

Introduction

So far we know how to implement graph depth-first and breadth-first search. These two approaches are crucial in order to understand graph traversal algorithms. However they are just explaining how we can walk through in breadth or depth and sometimes this isn’t enough for an efficient solution of graph traversal.

In the examples so far we had an undirected, unweighted graph and we were using adjacency matrices to represent the graphs. By using adjacency matrices we store 1 in the A[i][j] if there’s an edge between vertex i and vertex j. Otherwise we put a 0. However the value of 1 gives us only the information that we have an edge between two vertices, which is not always enough when designing graphs.

Indeed graphs can be weighted. Sometimes the path between two vertices can have a value. Thinking of a road map we know that distances between cities are represented in miles or kilometers. Thus often representing a road map as a graph, we don’t put just 1 between city A and city B, to say that there is a path between them, but also we put some meaningful information – let’s say the distance in miles between A and B.

Note that this value can be the distance in miles, but it can be something else, like the time in hours we’ve to walk between those two cities. In general this value is a function of A and B. So if we keep the distance between A and B we can say this function is F(A, B) = X, or distance(A, B) = X miles.

Of course in this particular example F(A, B) = F(B, A), but this isn’t always true in practice. We can have a directed graph where F(A, B) != F(B, A).

Here I talk about distance between two cities and it is the edge that brings some additional information. However sometimes we have to store the value of the vertices. Let’s say I’m playing a game (like chess) and each move brings me some additional benefit. So each move (vertex) can be evaluated with some particular value. Thus sometimes we don’t have a function of and edge like F(A, B), but function of the vertices, like F(A) and F(B).

In breadth-first search and depth-first search we just pick up a vertex and we consecutively walk through all its successors that haven’t been visited yet.

So in DFS in particular we started from left to right in the array above. So the first node that has to be explored is vertex “1”.

`0: [0, 1, 0, 0, 1, 1]`

However sometimes, as I said above, we have weighted graphs, so the question is – is there any problem, regarding to the algorithm speed, if we go consecutively through all successors. The answer in general is yes, so we must modify a bit our code in order to continue not with the first but with the best matching successor. By best-matching we mean that the successor should match some criteria like – minimal or maximal value. Continue reading Computer Algorithms: Graph Best-First Search

Computer Algorithms: Graph Depth-First Search

Introduction

Along with breadth-first search, depth-first search is one of the two main methods to walk through a graph. This approach though is different. Breadth-first search (BFS) looks pretty much like starting from a vertex and expanding the searching process level by level. This means that first we get some information of all the successors of the given node and then we go further with the next level. In other words BFS is like a wave. Depth-first search is based on a different approach, which can be very useful in some specific algorithms.

Both methods can be useful in solving different tasks. Continue reading Computer Algorithms: Graph Depth-First Search