Tag Archives: Computing

jQuery UI Slider IE bugfix

Do your jQuery slider brakes under IE too?

When you want to null the sliders on an page, using jQuery UI Slider, somehow the following code works in any browser except IE.

// wrong
$('.my-slider').slider('value', 0);

I say somehow, because according to the documentation this code is simply wrong. It can be used to get the value of the slider as it is a getter. You can null the value with the following snippet.

// correct
$('.my-slider').slider('option', 'value', 0);

IE Fix

Another way to null the value is with an anonymous object.

// correct
$('.my-slider').slider({ value: 0 });

This works on every browser including IE.

Computer Algorithms: Data Compression with Prefix Encoding

Overview

Prefix encoding, sometimes called front encoding, is yet another algorithm that tries to remove duplicated data in order to reduce its size. Its principles are simple, however this algorithm tend to be difficult to implement. To understand why, first let’s take a look of its nature.

Please, have a look on the following dictionary.

use
used
useful
usefully
usefulness
useless
uselessly
uselessness

Instead of keeping all these words in plain text or transferring all them over a network, we can compress (encode) them with prefix encoding.

Prefix Encoding

Continue reading Computer Algorithms: Data Compression with Prefix Encoding

Computer Algorithms: Data Compression with Relative Encoding

Overview

Relative encoding is another data compression algorithm. While run-length encoding, bitmap encoding and diagram and pattern substitution were trying to reduce repeating data, with relative encoding the goal is a bit different. Indeed run-length encoding was searching for long runs of repeating elements, while pattern substitution and bitmap encoding were trying to “map” where the repetitions happen to occur.

The only problem with these algorithms is that not always the input stream of data is constructed out of repeating elements. It is clear that if the input stream contains many repeating elements there must be some way of reducing them. However that doesn’t mean that we cannot compress data if there are no repetitions. It all depends on the data. Let’s say we have the following stream to compress.

1, 2, 3, 4, 5, 6, 7

We can hardly imagine how this stream of data can be compressed. The same problem may occur when trying to compress the alphabet. Indeed the alphabet letters the very base of the words so it is the minimal part for word construction and it’s hard to compress them.

Fortunately this isn’t true always. An algorithm that tryies to deal with non repeating data is relative encoding. Let’s see the following input stream – years from a given decade (the 90’s).

1991,1991,1999,1998,1991,1993,1992,1992

Here we have 39 characters and we can reduce them. A natural approach is to remove the leading “19” as we humans often do.

91,91,99,98,91,93,92,92

Now we have a shorter string, but we can go even further with keeping only the first year. All other years will as relative to this year.

91,0,8,7,0,2,1,1

Now the volume of transferred data is reduced a lot (from 39 to 16 – more than 50%). However there are some questions we need to answer first, because the stream wont be always formatted in such pretty way. How about the next character stream?

91,94,95,95,98,100,101,102,105,110

We see that the value 100 is somehow in the middle of the interval and it is handy to use it as a base value for the relative encoding. Thus the stream above will become:

-9,-6,-5,-5,-2,100,1,2,5,10

The problem is that we can’t decide which value will be the base value so easily. What if the data was dispersed in a different way.

96,97,98,99,100,101,102,103,999,1000,1001,1002

Now the value of “100” isn’t useful, because compressing the stream will get something like this:

-4,-3,-2,-1,100,1,2,3,899,900,901,902

To group the relative values around “some” base values will be far more handy.

(-4,-3,-2,-1,100,1,2,3)(-1,1000,1,2)

However to decide which value will be the base value isn’t that easy. Also the encoding format is not so trivial. In the other hand this type of encoding can be useful in som specific cases as we can see bellow.
Continue reading Computer Algorithms: Data Compression with Relative Encoding

JavaScript Performance: for vs. while

JavaScript Loops

If you have read some preformance tests on JavaScript loops, you may have heard that “while” is faster than “for”. However the question is how faster is “while”? Here are some results, but first let’s take a look on the JavaScript code.

The for experiment

console.time('for');
for (var i = 0; i < 10000000; i++) {
	i / 2;
}
console.timeEnd('for');

The while experiment

console.time('while');
var i = 0;
while (i++ < 10000000) {
	i / 2;
}
console.timeEnd('while');

Note – these tests are performed and measured with Firebug on Firefox.

Results

It’s a fact, that you’ll get different results as many times as you run this snippet. It depends also on the enviroment and software/hardware specs. That is why I performed them 10 times and then I took the average value. Here are the values of my performance tests. Note that both for and while perform 10,000,000 iterations.

And the Winner Is

While is the winner with an average result of 83.5 milliseconds, while “for” result is 88 average milliseconds.

As the diagram bellow shows, the while loop is slightly faster. However we should be aware that these performance gains are significant for large number of iterations!

JavaScript Performance: for vs. while
JavaScript Performance: for vs. while

Computer Algorithms: Data Compression with Diagram Encoding and Pattern Substitution

Overview

Two variants of run-length encoding are the diagram encoding and the pattern substitution algorithms. The diagram encoding is actually a very simple algorithm. Unlike run-length encoding, where the input stream must consists of many repeating elements, as “aaaaaaaa” for instance, which are very rare in a natural language, there are many so called “diagrams” in almost any natural language. In plain English there are some diagrams as “the”, “and”, “ing” (in the word “waiting” for example), “ a”, “ t”, “ e” and many doubled letters. Actually we can extend those diagrams by adding surrounding spaces. Thus we can encode not only “the”, but “ the “, which are 5 characters (2 spaces and 3 letters) with something shorter. In the other hand, as I said, in plain English there are two many doubled letters, which unfortunately aren’t something special for run-length encoding and the compression ratio will be small. Even worse the encoded text may happen to be longer than the input message. Let’s see some examples.

Let’s say we’ve to encode the message “successfully accomplished”, which consists of four doubled letters. However to compress it with run-length encoding we’ll need at least 8 characters, which doesn’t help us a lot.

// 8 chars replaced by 8 chars!?
input: 	"successfully accomplished"
output:	"su2ce2sfu2ly a2complished"

The problem is that if the input text contains numbers, “2” in particular, we’ve to chose an escape symbol (“@” for example), which we’ll use to mark where the encoded run begins. Thus if the input message is “2 successfully accomplished tasks”, it will be encoded as “2 su@2ce@2sfu@2ly a@2complished tasks”. Now the output message is longer!!! than the input string.

// the compressed message is longer!!!
input:	"2 successfully accomplished"
output:	"2 su@2ce@2sfu@2ly a@2complished tasks"

Again if the input stream contains the escape symbol, we have to find another one, and the problem is that it is often too difficult to find short escape symbol that doesn’t appear in the input text, without a full scan of the text. Continue reading Computer Algorithms: Data Compression with Diagram Encoding and Pattern Substitution